spectrum shows no parent peak but shows a peak at m / e 213 corresponding to the molecular ion minus a fluorine $\mathrm{C}_{4} \mathrm{~F}_{7} \mathrm{O}_{2}$. Other strong peaks are $m / e 119\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right), m / e 100$ $\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right), m / e 69 \mathrm{CF}_{3}, m / e 50\left(\mathrm{CF}_{2}\right)$, and $m / e 47(\mathrm{CFO})$.

In the preparation of perfluoro(ethyl acetate) a $1.74-\mathrm{g}$ sample of ethyl acetate was admitted into a four-zone gradient reactor ${ }^{2}$ with zones cooled to -100°. After the fluorination procedure, the product was collected, fractionated, and purified by glc (fluorosilicone QFl-0065 13\% on Chromasorb p) yielding the following products: $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{~F}_{5}$, $0.23 \mathrm{~g} \quad(5 \%) ; \quad \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CHFCF}_{3}, \quad 0.85 \quad \mathrm{~g} \quad$ (20\%); $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}, 0.05 \mathrm{~g}$ (1.2\%); $\mathrm{FCO}_{2} \mathrm{CHFCF}_{3}, 0.5 \mathrm{~g}$ (1.4\%); also the -196° trap contained 2 g of a mixture of about equal parts $\mathrm{CF}_{3} \mathrm{CFO}$ and $\mathrm{CHF}_{2} \mathrm{CFO}$.

Anal. Calcd. for $\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{O}_{2}: \mathrm{C}, 20.706 ; \mathrm{F}, 65.503$. Found: C, 20.65; F, 65.48.

Perfluoro(ethyl acetate) is a moisture sensitive gas (bp 21.4°) which easily rearranged to 2 mol of trifluoroacetyl fluoride. The infrared spectrum and ${ }^{19} \mathrm{~F} \mathrm{nmr}$ are in agreement with that published by Shreeve and coworkers. ${ }^{6}$ The major product isolated from the reaction of ethyl acetate and elemental fluorine is the trifluoroacetic acid ester of the unstable alcohol α-hydrotetrafluoroethyl alcohol. This fluoro alcohol ester is a moisture sensitive liquid (bp 31.7°) which can be converted by a Lewis base into a equimolar mixture of trifluoroacetyl fluoride and trifluoroacetaldehyde. The product was identified by a molecular weight determination (214.2, vs. 214 for $\mathrm{C}_{4} \mathrm{~F}_{7} \mathrm{HO}_{2}$), infrared, and
${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ nuclear magnetic resonance. The infrared spectrum exhibits bands at $2995(\mathrm{w}), 1830(\mathrm{~s}),(\nu \mathrm{C}=\mathrm{O}), 1420$ (w), 1370 (w), 1331 (w), 1300 (s), 1248 (s), 1218 (vs), $1198(\mathrm{vs}), 1140(\mathrm{~s}), 1105(\mathrm{vs}), 1062(\mathrm{~m}), 920(\mathrm{~m}), 733(\mathrm{~m})$, $698(\mathrm{~m}), 628(\mathrm{w}), 580(\mathrm{w}), 550(\mathrm{w}) \mathrm{cm}^{-1}$. The ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ nuclear magnetic resonance spectrum is summarized in Chart II. A major factor affecting yields in this reaction is presumed to be the rearrangement of perfluoro(ethyl acetate) to two moles of trifluoroacetyl fluoride catalyzed by hydrogen fluoride which is produced in the reaction. If this problem were overcome the quantity of ester recovered could increase markedly. The β-hydrotetrafluoroethyl trifluoroacetate was also fully characterized.

Chart II

$$
\begin{gathered}
\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}_{\mathrm{a}} \mathrm{~F}_{3}-\mathrm{C}-\stackrel{\mathrm{H}_{\mathrm{b}}}{\mathrm{C}}-\mathrm{C}_{\mathrm{d}} \mathrm{~F}_{3} \\
+78.98 \mathrm{~F}_{\mathrm{c}}+87.30 \\
-6.03+154.25 \\
J_{\mathrm{ab}}=\sim 0 \mathrm{~Hz} \\
J_{\mathrm{ac}}=0.5 \mathrm{~Hz} \\
J_{\mathrm{bc}}=50.53 \mathrm{~Hz} \\
J_{\mathrm{bd}}=3.05 \mathrm{~Hz} \\
J_{\mathrm{cd}}=5.87 \mathrm{~Hz}
\end{gathered}
$$

The yields of the most important by-products $\mathrm{CF}_{3} \mathrm{CFO}$ and $\mathrm{CHF}_{2} \mathrm{CFO}$ are often obtained in yields as high as 40%; $\mathrm{CF}_{4}, \mathrm{OCF}_{2}$, and possibly $\mathrm{FCO}_{2} \mathrm{C}_{2} \mathrm{~F}_{5}$ are also produced in the reaction.

For the preparation of perfluoropivaloyl fluoride, a $2-\mathrm{ml}$ sample ($1.961 \mathrm{~g}, 0.0188 \mathrm{~mol}$) was injected into the evaporator of the fluorination reactor (a six-zone modification). ${ }^{2}$ The reactor was cooled to -78° during the fluorination procedure.

A crude yield of 4.4 g of material containing perfluoroisobutane, perfluoro-3,3-dimethyl-1-oxacyclobutane, perfluoropivaloyl fluoride, and monohydrooctafluoropivaloyl fluoride was obtained. From this mixture, 2.6 g (52% yield)
of perfluoropivaloyl fluoride was isolated. The monohydroacyl fluoride still makes up approximately 20% of the molar yield, the other two products making up most of the remaining material. Perfluoropivaloyl fluoride is a very volatile solid (mp 38-38.5 sealed tube) which sublimes readily at room temperature. The product has been characterized by ${ }^{19} \mathrm{~F} \mathrm{nmr}\left(\mathrm{a} 95 \%\right.$ solution in CCl_{4}) and consists of a dectet (J $=11.5 \mathrm{~Hz}$) centered at -42.34 ppm and a doublet $(J=$ 11.4 Hz) centered at +67.08 ppm relative to external $\mathrm{CFCl}_{3}-\mathrm{CCl}_{4}$. The relative integrals were $1: 9.5$. The mass spectrum exhibits a molecular ion at $m / e 266$, a $\mathrm{P}-\mathrm{F}$ at $m / e 247$, a $\mathrm{P}-\mathrm{COF}_{2}$ at $m / e 200$, and other strong peaks at $m / e 181\left(\mathrm{C}_{4} \mathrm{~F}_{7}{ }^{+}\right), 178\left(\mathrm{C}_{4} \mathrm{~F}_{6} \mathrm{O}^{+}\right), 159\left(\mathrm{C}_{4} \mathrm{~F}_{5} \mathrm{O}^{+}\right), 131$ $\left(\mathrm{C}_{3} \mathrm{~F}_{5}{ }^{+}\right), 69\left(\mathrm{CF}_{3}{ }^{+}\right)$(strongest peak), and $47\left(\mathrm{COF}_{2}{ }^{+}\right)$.

The infrared spectrum exhibits bands at 1880 (m) ($\nu(\mathrm{C}-\mathrm{O})$), 1855 (sh), 1312 (sh), $1290(\mathrm{vs}), 1215(\mathrm{~m}), 990$ (s), 739 (w), $710(\mathrm{w}), 660(\mathrm{w})$, and $540(\mathrm{w})$ wave numbers.

Anal. Calcd for $\mathrm{C}_{5} \mathrm{~F}_{10} \mathrm{O}: \mathrm{C}, 22.574$; F, 71.412. Found: C, 22.38; F, 71.26 .

Acknowledgment. Research in fluorine chemistry at the Massachusetts Institute of Technology is supported by grants from the Air Force Office of Scientific Research and From the National Science Foundation.

References and Notes

(1) J. L. Adcock and R. J. Lagow, J. Org. Chem., 38, 3617 (1973).
(2) N. J. Maraschin and R. J. Lagow, J. Amer. Chem. Soc., 94, 8601 (1972); Inorg. Chem., 12, 1459 (1973).
(3) R. J. Lagow and J. L. Margrave, Proc. Nat. Acad. Sci. U.S, 67, 4, 8A (1970).
(4) J. H. Simons, U.S. Patent $2,500,300$ (1950).
(5) D. Sianesi, R. Fontanelli, and A. Grazioli, Belgium Patent 764, 110; German Patent 2,111,696.
(6) R. A. DeMarco, D. A. Couch, and J. O. Shreeve, J. Org. Chem., 37, 332 (1972).
(7) E. L. Varetti and P. J. Aymonino, J. Mol. Struct., 7, 155 (1971).
(8) P. D. Schuman, B. Henderson, G. Westmoreland, Abstracts, 165th National Meeting, of the American Chemical Society, Dallas, Texas, April 1973, FLUO 1.1.
(9) R. D. Bagnall, P. L. Coe, and J. C. Tatlow, J. Fluorine Chem., 3, 329 (1974).
(10) Alfred P. Sloan Fellow.

J. L. Adcock, R. J. Lagow*10
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Received March 20, 1974

The Size of Phosphorus Ligands. An Experimental Proton Magnetic Resonance Technique for Determining Cone Angles

Sir:
There is a clear nonlinear relationship between the shift of the methyl resonance of coordinated methanol (σ_{MMR}) and the "bulkiness" or "steric size" of the L ligand in trans$\left[\mathrm{LCo}(\mathrm{DH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{+}$, where $\mathrm{L}=\mathrm{RR}^{\prime}{ }_{2} \mathrm{P}\left(\mathrm{R}=\right.$ or $\neq \mathrm{R}^{\prime}$ $=$ alkyl, aryl, alkoxy, or phenoxy) and $\mathrm{DH}=$ monoanion of dimethylglyoxime, $\mathrm{HONC}\left(\mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NO}^{-}$(Table I). Steric effects of trivalent phosphorus ligands can dominate the chemistry of NiL_{4} complexes. ${ }^{1,2}$ A steric parameter, the cone angle (CA, hereafter referred to as TCA), was defined by Tolman. ${ }^{1}$ These angles have been correlated with a wide variety of phenomena including stabilities, ${ }^{3}$ fluxional behavior, ${ }^{4}$ rate constants, ${ }^{5}$ catalytic activities, ${ }^{6}$ and specificities ${ }^{6}$ in product formation. Electronic effects of L are also inherent in such phenomena. From the data in Table I it is clear that a good correlation exists between σ_{MMR} in $\mathrm{LCo}-$ $(\mathrm{DH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)^{+}$and the TCA of L. At low TCA, $<120^{\circ}$,

Table I. Pmr Spectral Data ${ }^{a}$ for $\left[\mathrm{LCo}(\mathrm{DH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{+}$Complexes ${ }^{b}$

$\mathbf{R R}{ }_{2} \mathbf{P}$	$\mathrm{CH}_{3} \mathrm{OH}$ shift, $\tau\left(J_{P H},{ }^{b} \mathrm{~Hz}\right)$	Oxime methyl shift, $\tau\left(J_{\mathrm{PE}}, \mathrm{Hz}\right)$	$\mathrm{ECA}^{\text {c }}$	TCA ${ }^{d}$	$\mathrm{p} K_{\mathrm{a}}{ }^{\text {e }}$	$\Sigma^{3} \chi_{i}{ }^{f}$
$\left(c-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{P}$	7.460 (1.2)	7.51 (0.5)	173	179	9.70	0.3
$\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{3} \mathrm{P}$	7.420 (0.9)	7.52 (0.5)	164	160	7.97	3.0
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$	7.395 (1.5)	7.83 (0.8)	159	145	2.73	12.9
$\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}^{g}$	7.310 (1.3)	7.89 (0.7)	140	140		10.0
$\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}$	7.265 (1.3)	7.95 (0.7)	132	136	4.6	11.2
$\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}$	7.250 (1.5)	7.90 (0.7)	129	132		16.3
(2-(CN) $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	7.245 (1.5)	7.47 (0.8)	129	130	1.36	21.9
$\left(0-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}^{i}$	7.240 (2.7)	7.90 (0.6)	128	141		28.2
$\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}^{h}$	7.230 (1.2)	7.56 (0.8)	127	130	8.43	4.2
$\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}$	7.200 (1.3)	7.81 (0.7)	125	127	6.50	9.5
$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}$	7.200 (1.9)	7.79 (0.5)	125	120		19.7
$\left(\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{3} \mathrm{P}$	7.180 (2.3)	7.59 (0.5)	124	122	3.4	18.9
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}$	7.170 (2.9)	7.78 (0.5)	123	121		29.1
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}^{i}$	7.145 (1.0)	7.59 (0.6)	<117	118	8.65	7.8
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{P}^{i}$	7.155 (2.7)	7.59 (0.5)	<117	101		30.6

a Varian HA100 (8% TMS reference and lock signal, frequency sweep mode) instrument for complexes dissolved in reagent grade methanol (at 24°). The shifts were insensitive to both concentration and traces of water and acid (but not base) and were easily reproduced ($\tau \pm 0.01$) with a JEOL MH100 or Varian A60 instrument (the latter was used to ensure that no complex signal was obscured by the ${ }^{13} \mathrm{C}$ satellite of solvent $\mathrm{CH}_{3} \mathrm{OH}$). We estimate that for the slightly broader $\mathrm{CH}_{3} \mathrm{OH}$ signal the coupling constants (which were determined at expanded scales) are accurate only to within $\pm 0.2 \mathrm{~Hz} .{ }^{b}$ Complexes were introduced as nitrates, which readily solvate, or prepared in $\mathrm{CH}_{3} \mathrm{OH}$ by adding AgNO_{3} to the chloride complex. The complexes were pure (pmr and elemental analyses) except for the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$ and $\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}$ compounds which were contaminated with $\left[\mathrm{L}_{2} \mathrm{Co}(\mathrm{DH})_{2}\right] \mathrm{X}$ (the triplet signal from these did not interfere with the nmr measurements). ${ }^{\circ}$ Experimental cone angle. ${ }^{d}$ Tolman cone angle ref 1 and $2 .{ }^{e}$ C. A. Streuli, Anal. Chem., 32, 985 (1960); W. A. Henderson and C. A. Streuli, J. Amer. Chem. Soc., 82, $5791(1960)$. $\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{3} \mathrm{P}$ assumed to be same as $\left(i-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{P}$, and $\left(i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{3} \mathrm{P}$ estimated from E. M. Thorsteinson, Ph.D. Thesis, Northwestern University, Evanston, Ill., 1966. ${ }^{f}$ Reference $8 .{ }^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{\mathrm{i}}\right)_{2} \mathrm{P}$, essentially identical. ${ }^{h}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{3} \mathrm{P}, \mathrm{ECA}=130^{\circ}$, TCA not determined. ${ }^{i}\left(0-\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}$, essentially identical. ${ }^{(}\left(2-(\mathrm{Cl}) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P},\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}$, and $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{P}$ have identical $C H_{3} \mathrm{OH}$ shifts at $\tau 7.15$ and TCA $\sim 110^{\circ}$.
the methyl resonance no longer shifts, whereas the electronic properties of L do change.

There is absolutely no correlation between $\sigma_{\text {MMR }}$ and the electronic properties of $\mathrm{L},{ }^{7,8}$ Ligands of similar bulkiness but different basicities, $\mathrm{Bu}_{3} \mathrm{P}$ and $\left(\mathrm{CNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{P}$, have similar shifts. Changes in the chemical shifts of protons of nonvarying ligands in a related series of cobalt complexes depend on cobalt anisotropy differences, induced mainly by the donor atom of the ligand which is varied. ${ }^{9}$

Bulky ligands are known to distort the geometry of cobalt complexes with "planar" tetradentate macrocyclic ligands. ${ }^{10}$ Cotton and Norman have reported the structure of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PRh}(\mathrm{DH})_{2} \mathrm{Cl} .^{11}$ The normals to the dioxime planes form an angle of 17.1°. Most probably, as the bulkiness of L increases in the $\left[\mathrm{LCo}(\mathrm{DH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{+}$series, the dioximes are increasingly bent.

A plot of $\sigma_{\text {MMR }} v s$. oxime methyl resonances (σ_{OMR}) for complexes where R and R^{\prime} are not anisotropic has a slope of $c a .-4$. This slope agrees well with calculations based on McConnell's equation ${ }^{13}$ with cobalt as the anisotropic center. Additionally, the complexes deepen in color and change from yellow to dark brown as the size of L increases. The electronic properties and, hence, anisotropy of the complexes probably change as the dioxime ligands bend.
A completely empirical expression ${ }^{15}$ was used to fit $\sigma_{M M R}$ to TCA and thereby obtain new empirical cone angles, ECA (Table I). The $\sigma_{\text {MMR }}$ may in fact serve as a useful steric parameter. Scaling against Tolman's values has the advantage of relating our values to ligands with TCA $<120^{\circ}$, however.

Tolman, Seidel, and Gosser reported stability constants (K) for NiL_{4} complexes. ${ }^{2}$ They found that, although (o- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$) ${ }_{3} \mathrm{P}$ formed complexes of similar but greater stability than did $\mathrm{CH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}$, these complexes were in turn much more stable than that with $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right){ }_{3} \mathrm{P}$. Our cone angles give the correct order and predict a much lower value of K for $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$. If the cone angles for $\mathrm{Et}_{3} \mathrm{P}$ and $\mathrm{Bu}_{3} \mathrm{P}$ are equal, then our angles predict that the $\mathrm{Ni}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{4}$ complex should be slightly more stable than $\mathrm{Ni}[(o-$ $\left.\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{P}\right]_{4}$ as was found.

The $\sigma_{\text {OMR }}$ show a slight but fairly regular decrease as ECA increases in ligands which do not contain CN groups or aromatic rings. Higher field shifts of dioxime methyl protons in complexes containing aromatic rings are attributed to anisotropic shielding, which depends on both distances and orientation of the rings. It might be expected that $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\sigma_{\mathrm{OMR}}=7.83\right)$ should show greater shielding than $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}$ (7.95) or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{OCH}_{3}\right)$ (7.90). That it does not suggests that the phenyl group orientations are not the same. We conclude that the arithmetic average Tolman ${ }^{2}$ suggested for calculating TCA for unsymmetrical $\mathrm{PR}^{\prime} \mathrm{R}_{2}$ tends to give cone angles which are too large when R is bulky. The good agreement between ECA and TCA for unsymmetrical ligands results from using what we consider to be a low TCA $=145^{\circ}$ for $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in the average.

Steric bulk is not an absolute quantity and different cone angles may be required for octahedral and tetrahedral complexes or for light and heavy metal systems. Additionally, these angles are not a good measure of free ligand size. ${ }^{16}$ However, our angles work well for NiL_{4} complexes.

Although the results presented here provide strong support for Tolman's concepts, we believe our results have two additional important features. First, the technique appears most promising for determining the cone angle of ligands of low symmetry or of ligands for which "strain" ${ }^{2}$ introduces uncertainty. Second, it is clear that in suitable cases, changes in chemical shifts can be interpreted. In most cases, shifts or changes in shifts are too complex for useful analysis. Proton chemical shifts of ligands coordinated to cobalt(III) seem to be an exception to the rule. Although differences in proton shifts are small, the accuracy of pmr measurements overcomes this deficiency. The dependence of such shifts on the electronic properties of the coordinated ligands have been noted previously. ${ }^{9,17}$ Our work represents the first evidence that steric factors are also important.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. We also thank Drs. C.
A. Tolman and R. B. King for their interest and gifts of ligands and Dr. D. L. Knirk for advice and the loan of a program.

References and Notes

(1) C. A. Tolman, J. Amer. Chem. Soc., 92, 2956 (1970).
(2) C. A. Tolman, W. C. Seidel, and L. W. Gosser, J. Amer. Chem. Soc., 96, 53 (1974).
(3) K. W. Barnett, T. G. Pollman, and T. W. Solomon, J. Organometal. Chem., 36, C23 (1972); M. Pańkowskl and M. Bigorgne, J. Organometal. Chem., 30, 227 (1971); S. J. Lippard and J. J. Mayerle, Inorg. Chem., 11, 85 (1972); C. K. Brown and G. Wilkinson, J. Chem. Soc. A, 2753 (1970); P. Rigo and A. Turco, Coord. Chem. Rev., 8, 175 (1972).
(4) D. H. Gerlach, W. G. Peet, and E. L. Muetterties, J. Amer. Chem. Soc., 94, 4545 (1972); P. Meakln, E. L. Muetterties, and J. P. Jesson, ibid., 95, 75 (1973)
(5) L. G. Marzill, P. A. Marzill, and J. Halpern, J. Amer. Chem. Soc., 93, 1374 (1971); J. Halpern and P. Phelan, lbid., 94, 1881 (1972); P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, ibid., 93, 4701 (1971); M. Y. Darensbourg, H. L. Conder, D. J. Darensbourg, and C. Hasday, ibid., 95, 5919 (1973); G. R. Dobson and J. K. Payson, ibid., 95, 5925 (1973).
(6) D. Evans, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. A, 3133 (1968); R. L. Pruett and J. A. Smith, J. Org. Chem., 34, 327 (1969); J. Falbe, "Synthesen mit Kohlenmonoxide," Springer-Verlag, Berlin, 1967, p 4 ff; C. A. Tolman, J. Amer. Chem. Soc., 92, 6785 (1970).
(7) For a review of the Importance of electronic effects of phosphorus donors see J. G. Verkade, Coord. Chem. Rev., 9, 1 (1972); T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
(8) C. A. Tolman, J. Amer. Chem. Soc., 92, 2953 (1970).
(9) W. C. Trogler, R. C. Stewart, L. A. Epps, and L. G. Marzilli, Inorg. Chem., 13, 1563 (1974).
(10) D. Dodd and M. O. Johnson, Organometal. Chem. Rev., 52, 1 (1973)
(11) F. A. Cotton and J. G. Norman, Jr., J. Amer. Chem. Soc., 93, 80 (1971). Bond lengths are quite slmilar for cobaloximes. ${ }^{12}$ A. Chakrovortz, Coord. Chem. Rev., 13, 1 (1974).
(12) W. W. Adams and P. G. Lenhert, Acta Crystallogr., Sect. B, 29, 2412 (1973).
(13) H. M. McConnell, J. Chem. Phys., 27, 226 (1957).
(14) The anisotropy of the dioxime ligands can also explain $\sigma_{\text {MMR }}$ but an explanation for σ OMR is not evident.
(15) The expression was

$$
\mathrm{TCA}=\sum_{i=1}^{4} \mathrm{C}_{i}\left(1.0-\frac{0.15}{(T-7.0)}\right)^{i-1}
$$

and the method of least squares gave $\left(C_{1}-C_{4}=116.7,81.6,-310.9\right.$, and 465.4 , respectively). Only symmetric ligands with TCA ≥ 118 were employed. TCA's given by Toman were used except (1) for $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$, a value of TCA $=155^{\circ}$ was used and (2) for $\left(i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{3} \mathrm{P}$ a TCA $=122^{\circ}$
(16) W. C. Trogler, R. C. Stewart, and L. G. Marzilli, J. Amer. Chem. Soc., 96, 3697 (1974).
(17) H. A. O. Hill and K. G. Morallee, J. Chem. Soc. A, 554 (1969); E. S. Gore, J. C. Dabrowiak, and D. H. Busch, J. Chem. Soc., Chem. Commun., 923 (1972); W. L. Jolly, A. D. Harris, and T. S. Briggs, Inorg. Chem., 4, 1064 (1965); D. N. Hendrickson and W. L. Jolly, ibid., 9, 1197 (1970).

William C. Trogler, Luigi G. Marzilli*
Department of Chemistry, The Johns Hopkins University Baltimore, Maryland 21218
Received July 5, 1974

The (trans - $\mathbf{2}^{\prime}$-Methylcyclopropyl)methyl System. Stereochemistry of Ionization, Rearrangement, and Solvent Capture ${ }^{1}$

Sir:

Acceptance of bisected structures for cyclopropylcarbinyl cations is based on a growing body of experimental ${ }^{2}$ and theoretical work. ${ }^{2,3}$ However, except for molecular orbital calculations, ${ }^{3}$ all of the available evidence which strongly supports bisected cations was obtained with secondary and tertiary systems. ${ }^{2}$ Recently Olah and coworkers ${ }^{4}$ challenged the concept that the parent cation (a primary system) is bisected and have proposed an unsymmetrically bridged structure on the basis of ${ }^{13} \mathrm{C}$ chemical shift comparisons. Subsequently the use of ${ }^{13} \mathrm{C}$ chemical shifts to decide between bisected and bridged structures was questioned, ${ }^{5}$ but there were still no direct experimental data to support a bi-

Scheme I

sected cation for primary cyclopropylcarbinyl systems. In this communication we present stereochemical evidence which bears on this important structural question.

Methanesulfonate 5 was prepared from optically active trans-2-methylcyclopropanecarboxylic acid by the sequence of reactions shown in Scheme I. Assuming that yeast alcohol dehydrogenase reduction of aldehyde 3 is stereospecific, ${ }^{6}$ the alcohol ${ }^{7}$ used to prepare 5 was a mixture of diastereomers- $77 \% 1 S, 1^{\prime} R, 2^{\prime} R$ and $23 \% 1 S, 1^{\prime} S, 2^{\prime} S$.

Hydrolysis of 5 ($77 \% 1 S, 1^{\prime} R, 2^{\prime} R$) in 60% acetonewater with 2 equiv of γ-collidine, $k^{2 S^{5}}=(8.2 \pm 0.2) \times$ $10^{-2} \mathrm{sec}^{-1}$, gave three major products; ${ }^{8} 4(26 \%), 6(56 \%)$, and 7 (18\%). The ${ }^{2} \mathrm{H}$ distribution in each alcohol was deduced by measuring ${ }^{1} \mathrm{H} \mathrm{nmr}$ intensities for samples where the chemical shifts of protons $\mathrm{H}_{1}-\mathrm{H}_{4}$ were separated as far as possible using $\mathrm{Eu}(\mathrm{fod})_{3}$. Chemical shift assignments ${ }^{9}$ for $4\left(0.235 \mathrm{mmol}\right.$ of $\left.\mathrm{Eu}(\mathrm{fod})_{3} / 0.413 \mathrm{mmol}\right),{ }^{10} 6(0.076 \mathrm{mmol}$ of $\left.\mathrm{Eu}(\mathrm{fod})_{3} / 0.384 \mathrm{mmol}\right),{ }^{11}$ and $7\left(0.118 \mathrm{mmol}\right.$ of $\mathrm{Eu}(\mathrm{fod})_{3} /$ $0.257 \mathrm{mmol})^{12}$ are summarized below. Although alcohols 4,

6, and 7 are each inseparable mixtures of four ${ }^{2} \mathrm{H}$ isomers, the mole fractions of ${ }^{2} \mathrm{H}$ isomers for each skeletal isomer (${ }^{2} \mathrm{H}$ at positions $\mathrm{H}_{1}-\mathrm{H}_{4}$) correspond directly to the ${ }^{2} \mathrm{H}$ intensities listed in Table I.

An abbreviated mechanism is presented in Scheme II to account for the observed ${ }^{2} \mathrm{H}$ distribution. Using the data in Table $\mathrm{I},{ }^{13}$ the stereochemistries of five individual stepsionization of 5 , reaction of 8 with solvent at C_{1}, rearrangement of 8 to its enantiomer and to 9 , and reaction of 9 with

